
PyOSLC

Latest Improvements

Frank Patz-Brockmann (CONTACT Software GmbH)
Mario Jiménez Carrasco (Koneksys)

Nov 2nd, 2021

1

Frank Patz-Brockmann

2

Director R&D at Contact Software

Leading the team responsible for Contact's Elements
technology-platform, and the PLM and IoT-solutions based on it. He
looks back on more than 25 years of experience in enterprise and
engineering software, helping to define Contact's product strategy
and advising key customers in automotive and other industries.

Mario Jiménez Carrasco

3

Senior Developer at Koneksys

Main contributor to the open-source PyOSLC project.

Developed several data integration solutions to connect
domain-specific applications in Application Lifecycle
Management (ALM) and Product Lifecycle Management
(PLM).

email: mario.carrasco@koneksys.com

mailto:mario.carrasco@koneksys.com

4

The PyOSLC project

● What is it?

○ PyOSLC is an SDK to implement OSLC APIs in Python.

○ In scope: server-side SDK & client-side SDK, priority server-side
for now

○ CONTACT Software funds OSS development by Koneksys, to
support OSLC with product CONTACT Elements (PLM & more):
https://www.contact-software.com/en/

● Where can I find PyOSLC?

https://github.com/cslab/pyoslc

PyOSLC

5

https://www.contact-software.com/en/
https://github.com/cslab/pyoslc

What happened so far ...

6

● PyOSLC has been developed during the last two years but with some
intermittence in which we have reviewed and tested the integrated
features, up to working demonstrators.

● Spent a lot of time on testing interoperability & reverse engineering
not-so-standard implementations of OLSC-supporting tools (Core and
Vocabularies are very robust -- Auth & Service advertising not so much)

● Early this year, we decided to change course a bit and rework APIs to
make it more framework-like

● Meanwhile: independent team at Contact working on adopting PyOSLC
into our standard product

7

● Contact Elements (CE) is heavily based on Python → therefore PyOSLC

● OSLC server-side is more or less REST/LDP conventions plus vocabularies

● CE uses WSGI, Python’s standard for web application. WSGI supports composability,
therefore server-side PyOSLC should be a pluggable WSGI component, that can run
stand-alone or in combination with a bigger application like CE

● PyOSLC should support the dynamic nature of Python: very little boilerplate code,

supporting introspection

● De-coupled binding between PyOSLC and stored objects in the hosting application (or

whatever backend), to support different use-cases

Contact’s requirements

8

9

Previous API Design

PyOSLC Building Blocks / Current

10

Data Source (e.g. CSV file)

REST API Endpoints (Flask, Flask-RESTx)

WSGI Server (e.g. gunicorn)

Jazz-specific Resources
(for integration with IBM ELM)

OpenAPI Doc
(Swagger v2.0)

OSLC-specific Resources (also
data source specific)

11

Packages

Architecture

12

Data
GET

POST

PUT

DELETE

OSLC API
Client

RDF Lib

Python

HTTP RDF

OSLC Resources

13

Curl for GET on SPC

14

New API Design

15

CONTACT Elements (CE) Application

CE Application

WSGI (callable)

CE Application interacts
with CIM database

WSGI callable allows to
run the CE application
within a web server as
an API

pyoslc-server is the server SDK, utilizing Werkzeug
and the base package to provide building blocks
for creating OSLC servers

pyoslc is the base package, including facilities for
mapping to and from RDF, defining domains and
vocabularies etc.

16

PyOSLC SDK

pyoslc

pyoslc-server

pyoslc-client
More packages could be added to the pyoslc sdk
in the future

pyoslc-sdk

Old New

1. Stateless
2. Supports JSON and XML
3. Resource methods (GET, POST, etc)
4. Uniform Interface
5. Resource Identifier
6. etc.

1. Uniform self-descriptive REST API
2. Linked data model for standard

domains (ALM, PLM)
3. Exchange data in RDF (JSON-LD and

others)
4. Self discoverability
5. Traceability
6. etc.

17

REST App / OSLC App

REST API OSLC API

18

OSLC Enabled Application

Existing REST API

WSGI (callable)

Adding PyOSLC to an existing REST API, generates an OSLC Enabled
Application

OSLCEnabled
Application

PyOSLC

server api

By using PyOSLC it is possible to deploy the application within a WSGI
web server using its own WSGI callable or the PyOSLC server
implementation.

- Importing the OSLCAPP class

- Instantiating the OSLC API

- Initializing the adapters

19

Demo: Initializing OSLC Application

OSLCEnabled Application

pyoslc-server, implements
callable to execute the API directly
in a web server

20

OSLC Deployment options

pyoslc, implements the endpoints
and routings to process the
requests, running within an
existing web server

Existing REST API

WSGI (callable)

PyOSLC API
(Routing)

OSLC Application

PyOSLC API (Routing)

PyOSLC Server

WSGI (callable)

Existing REST API

- Running the application by
instantiating the OSLC Enabled
application

21

Demo: Running the OSLC App

- Interface specification for connecting
web apps and web servers (PEP 3333)

- Define rules for the web app and the
web server to interact.

- Requires a callable function

- Receive Environment variables and
callback function

An example:

A Java similar API

Java Servlet API

22

What is WSGI

- WSGI de facto should be used.

- PyOSLC could create or become into
a Framework (to run upon to REST
APIs)

- PyOSLC could or could not be an
application, it could be an extension
of an application instead.

23

WSGI Compliance

24

PyOSLC Request Flow

HTTP Request
uri

method
headers

querystring

 WSGI Server

 WSGI Framework / PyOSLC Server

 OSLC Enabled Application

middleware
negotiation
serialization

adapter
container

serviceprovid
er

HTTP Response

environment
variables

 CE Application OSLC Routing

25

Routing with Werkzeug
Werkzeug

Request(environ)

Routing

Rule(endpoint, args)

Resource Container Resource Adapter

Request(environ)

A rule defines the endpoint “path” with the
arguments and the method or class that should
process the request
req_data = RequirementsAdapter(REQSTORE)

self.api.route("/requirements/<int:identifier>", req_data)

The matched endpoint and method will be
executed in the resource container or resource
adapter class or instance.

class RequirementsAdapter (ServiceResourceAdapter) :
 ...

 def get_item(self, identifier):
 for item in self._items:
 if item.identifier == identifier:
 return item

26

Service Resource Adapter
Routing (url_map)

Rule (endpoint_path, endpoint_method)

url_map

Service Resource

Configuring the Router using a Service Resource
Adapter class in which the method should be
configured to be implemented in the Containers
or Adapters

The methods of the Service Resource could be
bind to the methods of the Container or Adapter.

class RequirementsAdapter(ServiceResourceAdapter):
 ...

 def get_item(self, identifier):
 for item in self._items:
 if item.identifier == identifier:
 return item

QueryCapability CreationFactory

SelectionDialog CreationDialog

Resource Container

Resource Adapter

- Adapters will create the OSLC
endpoints

- Adapters will manage the header
negotiation for query strings

- Adapters will manage the serialization
from/to rdf and python objects

- Developers just need to implement
the methods required for theirs OSLC
API

- Methods will talk with datasource
using python objects

- Developers do not need to take care
about RDF just python objects

27

Benefits of Service Resource Adapter

28

New Components

29

Domain-Specific Resources

Resources are defined in data classes and
will be Python objects

29

Requirement

Product

Document

TestCase

@dataclass
class Requirement:

identifier: str = ""
title: str = ""
description: str = ""

REQSTORE = [
 Requirement("1", "Provide WSGI implementation" , "..."),
 Requirement("2", "Capability to add resources" , "..."),
 # and so on ...
]

Resource classes should be implemented in
the CE Application side.

- Domain-Specific Resource defines the
attributes that will be used

- The class could have more attributes

- The class could have methods if the
developer need them for using within
the adapter.

- The class will be used only for the
adapter

30

Demo: Defining a DS Resource

Adapter is the implementation of methods
on the CE or Application side to manipulate
the resources.

31

Resource Adapter

Requirement store

creation_factory(item)get_resource(id)

class RequirementsAdapter(ServiceResourceAdapter):
 ...

 def get_resource(self, identifier):
 for item in self._items:
 if item.identifier == identifier:
 return item

“To PyOSLC, data items are completely opaque, they are simple
received from and passed back into the application adapter.”

query_capability()

Demo: Defining an Adapter

32

- Importing and extending
ServiceResourceAdapter class

- Configuring the OSLC attributes of the
class

- Implementing the methods that will
be managed by the adapter

- The class could contain other
methods

Adding Adapters to OSLC

33

- The adapter should be instantiated to
initialize the attributes

- The mapping should be defined

- The adapter is added to the OSLC API

- This shows one, but more than one
adapter could be added to the OSLC
API.

The RDF mapping should define the attribute mapping
from Python object attributes to RDF attributes

34

Mapping RDF for Adapter

Requirement store

to_rdf(graph, subject, item)
REQ_TO_RDF = {
 "identifier": DCTERMS.description,
 "title": DCTERMS.title,
 "description": DCTERMS.identifier,
}

class RequirementsAdapter(ServiceResourceAdapter):

...
 def to_rdf(self, graph, subject, item):
 graph.add((subject, RDF.type, RM.Requirement))
 for field, property in REQ_TO_RDF.items():
 graph.add((subject, property, Literal(getattr(item, field)))
 return graph

RDF mapping

“Note that subject is computed by PyOSLC and given to to_rdf as
an argument.”

- Importing standard vocabularies

- Importing domain-specific
vocabularies

- Dictionary with python attributes and
OSLC terms

35

Demo: Mapping

By adding an Adapter the OSLC Application
will create a Service Provider with the
corresponding set of services.

The methods that will process the
information will be implemented on the
adapter

The OSCL Application is only responsible of
the generation of the endpoints for SPC, SP,
QC

36

Capabilities for Adapters

Service

creation_factory() query_capability()

craetion_dialog() selection_dialog()

resource_shape()

OSLCEnabledApplication

ServiceProvider

- Adapter should implement the
methods for OSLC endpoints like QC,
CF

- Adapter will manage python objects

- Adapter does not need to implement
all OSLC methods or endpoints

37

Demo: Methods of Adapter

38

The Result

Getting the Catalog

39

- The catalog will show each adapter
as a ServiceProvider

- The identifier of the adapter is part of
the URL for the SP

Getting the Service Provider

40

- The Service Provider will show the
services enabled in the adapter class

41

Query Capability

- The query capability and the other
methods of the service, will be called
by the OSLC API

- OSLC API just process the input /
output to serialize and deserialize
from python objects to RDF and vice
versa

42

Conclusion

- PyOSLC supports the development of OSLC APIs for any domain-specific resources

- Developer only needs to have a basic understanding of OSLC concepts

- Developer thereby does not need to modify nor manage any code related to the
translation of Python objects into RDF

- PyOSLC now supports two options to deploy an OSLC API

PyOSLC New API

43

44

Thanks

