
Coatl - OSLC wrapper for APIs

OSLC Fest 2021
Juan Quintanar
juan.quintanar@koneksys.com

November 4, 2021

mailto:juan.quintanar@koneksys.com

Idea

Most web applications provide REST API architecture

REST APIs are good “data containers”, they provide a
summary of application data.

REST API cannot connect with applications that work
under OSLC specifications.

2

Data
source

REST

Client

Motivation
In order to create OSLC API developers need to employ
a certain amount of time to accomplish it but…

What if:

Develop another OSLC API?
Need the OSLC API now?

Partial solution: we can reuse some OSLC API
components such as:

❏ Data source components → Fetch data
❏ OSLC Components → Parse data into RDF
❏ API endpoints → HTTP requests

3

OSLC

Data source
components

OSLC
Components

API endpoints

Inspiration
GraphQL:

❏ Query language for APIs
❏ Clients requests only data that they need

GraphQL server such as Apollo or Graphene can
be employed to wrap a REST API and make
requests to the REST API.

In order to wrap REST APIs the server uses modules:

❏ Type definitions → Data model

❏ Resolvers → Functions to perform mapping

4

Data
source

REST

GraphQL API

PyOSLC

Inspiration

5

Data
source

REST

GraphQL API

PyOSLC:

❏ SDK based on Python
❏ Expose databases as OSLC SP
❏ Mapping of data sources into RDF

PyOSLC perform its operations by using modules:

❏ RDF Mapping

❏ OSLC resources described as Python objects

Inspiration

6

OpenAPI Specification (OA Spec) → API
description format for REST APIs.

Swagger → Set of open-source tools for
designing, building and documenting
REST APIs.

Swagger Codegen → Generates server
stub, client libraries from an OpenAPI
spec, create/use custom generators.

OpenAPI
spec

Swagger
Codegen

PyOSLC

GraphQL API

REST

Data
source

What about creating a similar
approach using OSLC?

7

Solution
Coatl → OSLC wrapper for REST APIs

Based on Swagger Codegen / Python

Necessary:

- REST API
- Swagger Codegen libraries
- Open API document

8

Coatl

OpenAPI spec

PyOSLC

GraphQL API

REST

JAQLSwagger
Codegen Python

OSLC

How Coatl works?
Coatl works by documenting REST API data into OA spec with extensions.

Input: OpenAPI spec file

Output: OSLC API

Specify:

- OSLC API endpoints
- Coatl extensions:

- REST API → OSLC API data source
- JSON keys of REST→ RDF properties

9

OSLC APISwagger
Codegen

Coatl

OpenAPI doc

Coatl
extensions

API
endpoints

Authorization Params

How to use Coatl?
You need to perform two operations:

1. Create OpenAPI spec
2. Generate OSLC API by using Swagger Codegen

10

OSLC

Coatl PyOSC

JAQLSwagger
Codegen

Python

Swagger
CodegenOpenAPI doc

1.- OpenAPI document
Specify an OpenAPI document:

OSLC API endpoints

Via vendor extensions:

- REST API URLs → OSLC API
data source

- JSON keys → RDF
properties

11

OpenAPI Coatl Extensions for OSLC

Operations

● x-Jazz-Root Services
● x-OSLC-Service Provider Catalog
● x-OSLC-ServiceProvider
● x-OSLC-Services

○ Query Capability
○ UI dialog

● x-OSLC-UI-Preview

Endpoints

● x-OSLC-QueryCapability-endpoint
● x-OSLC-Publisher-endpoint
● x-OSLC-ResourceShape-endpoint
● x-OSLC-SelectDialog-endpoint
● x-Jazz-Configuration-Catalog

12

Models

● x-OSLC-ResourceProperties
● x-RDF-Vocabulary

Configuration Management

● x-OSLC-Components
● x-OSLC-Baseline
● x-OSLC-Stream
● x-OSLC-Configuration-Selection
● x-OSLC-Configuration-Versioned-Resource

The following extensions are employed to map REST API URL/data into OSLC Structure:

Example: REST API endpoints

13

GET: https://api.github.com/orgs/koneksys

GET: https://api.github.com/orgs/koneksys/repos

The data provided by Github API
endpoints will be employed to
create a Github OSLC API
resources.

https://api.github.com/orgs/koneksys
https://api.github.com/orgs/koneksys/repos

OSLC API data source

14

OpenAPI spec with Coatl extensions for
OSLC Service Provider Catalog creation.

OSLC Service Provider Catalog resource
describing github account.

REST resource describing github account.
Github API URL:
https://api.github.com/orgs/koneksys

https://api.github.com/orgs/koneksys

JSON keys → RDF

JSON Query Language (JAQL) is employed
to parse JSON data into RDF properties

JAQL → Handle stored data in JSON
documents.

JAQL provides tools to perform other
operations such as:

❏ Get keys from JSON nested data
❏ Multiple Selection
❏ Functions expressions

Coatl contains libraries for managing JAQL
queries.

15

Coatl PyOSC

JAQLSwagger
Codegen Python

Modified
resource
describing
OSLC
Service
Provider

REST
resource
describing
github
repository.

OpenAPI spec with Coatl extensions for
OSLC Service Provider Catalog creation.

OSLC Service Provider Catalog resource
describing github account.

JSON keys → RDF
REST resource describing github account.
Github API URL:
https://api.github.com/orgs/koneksys

https://api.github.com/orgs/koneksys

OpenAPI spec with Coatl extensions for
OSLC Service Provider creation.

OSLC Service Provider resource describing
github repository.

JSON keys → RDF
REST resource describing github repository.
Github API URL:
https://api.github.com/orgs/koneksys/repo

https://api.github.com/orgs/koneksys/repo

OpenAPI spec with Coatl
extensions for OSLC Query
Capability service creation.

OSLC artifact describing a
single github file.

JSON keys → RDF
REST resource describing github files.
Github API URL:

https://api.github.com/repos/koneksys/KF
E/git/trees/master?recursive=1

https://api.github.com/repos/koneksys/KFE/git/trees/master?recursive=1
https://api.github.com/repos/koneksys/KFE/git/trees/master?recursive=1

2.- Create OSLC wrapper
OSLC API will be created through
Swagger Codegen and Coatl library.

19

Coatl

OpenAPI spec

PyOSLC

GraphQL API

REST

JAQLSwagger
Codegen Python

OSLC

Result → Live demo
The information provided by REST API is exposed through OSLC Resources.

Github API example:

2020

Coatl extensions for integration
with IBM ELM

21

TM

IBM ELM
❏ Provides integrated end-to-end solution across

all engineering data.
❏ Optimizes collaboration and communication

across all stakeholders.

OSLC APIs integration

❏ Enables extensibility through open standards
such as OSLC

❏ Optimize communication, collaboration and
verification of artifacts from different vendors

❏ Improve decision-making by linking artifacts
from different vendors to Jazz.

22

OSLC

GraphQL API

REST

IBM ELM

TM

Coatl & IBM/ELM
Support for Oauth v1.0a for registering external
OSLC API as Jazz friend application which
enables:

❏ To associate providers (e.g. Github
repo/OSLC SP) to a IBM ELM project

❏ To use delegated dialogs from
external OSLC API within IBM ELM apps

❏ To define contributing components
from external OSLC API to a global
component in IBM GCM

23

TM

Swagger
Codegen

OSLC

GraphQL API

REST

IBM ELM

Coatl PyOSLC

JAQLSwagger
Codegen Python

Next steps

24

Next steps (OSLC)
❏ Improve RDF mapping definition in OpenAPI Spec

❏ OSLC Configuration Management compatible with IBM ELM

❏ Tracked Resource Set

25

Next steps (Code)
❏ Deploy new OSLC APIs in cloud / container

❏ Include in Coatl library more automated tests

❏ Test Coatl library with more REST APIs

❏ Include Coatl library support for OpenAPI 3.0

26

Conclusion
❏ Coatl → OSLC wrapper for REST APIs

❏ Automatic code generation

❏ Coatl significantly reduce the implementation effort for developers creating

OSLC APIs

❏ Developers only need to understand OSLC concepts, they don’t need to

program them

27

Questions about Coatl?
See a Coatl demo?

Contact us

axel.reichwein@koneksys.com
juan.quintanar@koneksys.com

November 4, 2021

mailto:axel.reichwein@koneksys.com
mailto:juan.quintanar@koneksys.com

