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Idea

Most web applications provide REST API architecture

REST APIs are good “data containers”, they provide a 
summary of application data.

REST API cannot connect with applications that work 
under OSLC specifications.
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Motivation
In order to create OSLC API developers need to employ 
a certain amount of time to accomplish it but…

What if:

Develop another OSLC API?
Need the OSLC API now?

Partial solution: we can reuse some OSLC API 
components such as:

❏ Data source components → Fetch data
❏ OSLC Components → Parse data into RDF
❏ API endpoints → HTTP requests
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Inspiration
GraphQL: 

❏ Query language for APIs
❏ Clients requests only data that they need

GraphQL server such as Apollo or Graphene can 
be employed to wrap a REST API and make 
requests to the REST API.

In order to wrap REST APIs the server uses modules:

❏ Type definitions → Data model

❏ Resolvers → Functions to perform mapping
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PyOSLC

Inspiration
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PyOSLC: 

❏ SDK based on Python
❏ Expose databases as OSLC SP
❏ Mapping of data sources into RDF

PyOSLC perform its operations by using modules:

❏ RDF Mapping

❏ OSLC resources described as Python objects



Inspiration
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OpenAPI Specification (OA Spec) → API 
description format for REST APIs.

Swagger → Set of open-source tools for 
designing, building and documenting 
REST APIs.

Swagger Codegen → Generates server 
stub, client libraries from an OpenAPI 
spec, create/use custom generators.
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What about creating a similar 
approach using OSLC?
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Solution
Coatl → OSLC wrapper for REST APIs

Based on Swagger Codegen / Python

Necessary:

- REST API
- Swagger Codegen libraries
- Open API document
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How Coatl works?
Coatl works by documenting REST API data into OA spec with extensions.

Input: OpenAPI spec file

Output: OSLC API

Specify:

- OSLC API endpoints
- Coatl extensions:

- REST API → OSLC API data source
- JSON keys of REST→ RDF properties
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How to use Coatl?
You need to perform two operations:

1. Create OpenAPI spec 
2. Generate OSLC API by using Swagger Codegen
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1.- OpenAPI document
Specify an OpenAPI document:

OSLC API endpoints

Via vendor extensions:

- REST API URLs → OSLC API 
data source

- JSON keys → RDF 
properties
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OpenAPI Coatl Extensions for OSLC

Operations

● x-Jazz-Root Services
● x-OSLC-Service Provider Catalog
● x-OSLC-ServiceProvider
● x-OSLC-Services

○ Query Capability
○ UI dialog

● x-OSLC-UI-Preview

Endpoints

● x-OSLC-QueryCapability-endpoint
● x-OSLC-Publisher-endpoint
● x-OSLC-ResourceShape-endpoint
● x-OSLC-SelectDialog-endpoint
● x-Jazz-Configuration-Catalog
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Models

● x-OSLC-ResourceProperties
● x-RDF-Vocabulary

Configuration Management

● x-OSLC-Components
● x-OSLC-Baseline
● x-OSLC-Stream
● x-OSLC-Configuration-Selection
● x-OSLC-Configuration-Versioned-Resource

The following extensions are employed to map REST API URL/data into OSLC Structure:



Example: REST API endpoints
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GET: https://api.github.com/orgs/koneksys 

GET: https://api.github.com/orgs/koneksys/repos 

The data provided by Github API 
endpoints will be employed to 
create a Github OSLC API 
resources.

https://api.github.com/orgs/koneksys
https://api.github.com/orgs/koneksys/repos


OSLC API data source
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OpenAPI spec with Coatl extensions for 
OSLC Service Provider Catalog creation.

OSLC Service Provider Catalog resource 
describing github account.

REST resource describing github account.
Github API URL: 
https://api.github.com/orgs/koneksys 

https://api.github.com/orgs/koneksys


JSON keys → RDF 

JSON Query Language (JAQL) is employed 
to parse JSON data into RDF properties

JAQL → Handle stored data in JSON 
documents.

JAQL provides tools to perform other 
operations such as:

❏ Get keys from JSON nested data
❏ Multiple Selection
❏ Functions expressions

Coatl contains libraries for managing JAQL 
queries.
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OpenAPI spec with Coatl extensions for 
OSLC Service Provider Catalog creation.

OSLC Service Provider Catalog resource 
describing github account.

JSON keys → RDF
REST resource describing github account.
Github API URL: 
https://api.github.com/orgs/koneksys 

https://api.github.com/orgs/koneksys


OpenAPI spec with Coatl extensions for 
OSLC Service Provider creation.

OSLC Service Provider resource describing 
github repository.

JSON keys → RDF
REST resource describing github repository.
Github API URL: 
https://api.github.com/orgs/koneksys/repo 

https://api.github.com/orgs/koneksys/repo


OpenAPI spec with Coatl 
extensions for OSLC Query 
Capability service creation.

OSLC artifact describing a 
single github file.

JSON keys → RDF
REST resource describing github files.
Github API URL: 

https://api.github.com/repos/koneksys/KF
E/git/trees/master?recursive=1 

https://api.github.com/repos/koneksys/KFE/git/trees/master?recursive=1
https://api.github.com/repos/koneksys/KFE/git/trees/master?recursive=1


2.- Create OSLC wrapper
OSLC API will be created through 
Swagger Codegen and Coatl library.
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Result → Live demo
The information provided by REST API is exposed through OSLC Resources.

Github API example:

2020



Coatl extensions for integration 
with IBM ELM 
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IBM ELM
❏ Provides integrated end-to-end solution across 

all engineering data.
❏ Optimizes collaboration and communication 

across all stakeholders.

OSLC APIs integration

❏ Enables extensibility through open standards 
such as OSLC

❏ Optimize communication, collaboration and 
verification of artifacts from different vendors

❏ Improve decision-making by linking artifacts 
from different vendors to Jazz.
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Coatl & IBM/ELM
Support for Oauth v1.0a for registering external 
OSLC API as Jazz friend application which 
enables:

❏ To associate providers (e.g. Github 
repo/OSLC SP) to a IBM ELM project

❏ To use delegated dialogs from 
external OSLC API within IBM ELM apps

❏ To define contributing components 
from external OSLC API to a global 
component in IBM GCM
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Next steps
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Next steps (OSLC)
❏ Improve RDF mapping definition in OpenAPI Spec

❏ OSLC Configuration Management compatible with IBM ELM

❏ Tracked Resource Set
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Next steps (Code)
❏ Deploy new OSLC APIs in cloud / container

❏ Include in Coatl library more automated tests

❏ Test Coatl library with more REST APIs

❏ Include Coatl library support for OpenAPI 3.0
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Conclusion
❏ Coatl → OSLC wrapper for REST APIs

❏ Automatic code generation

❏ Coatl significantly reduce the implementation effort for developers creating 

OSLC APIs

❏ Developers only need to understand OSLC concepts, they don’t need to 

program them
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Questions about Coatl?
See a Coatl demo?

Contact us

axel.reichwein@koneksys.com 
juan.quintanar@koneksys.com 
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